A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.
/home/runner/work/pmultiqc/pmultiqc/data
pmultiqc
pmultiqc is a MultiQC module to show the pipeline performance of mass spectrometry based quantification pipelines such as nf-core/quantms, MaxQuant, and DIA-NN.https://github.com/bigbio/pmultiqc
Experimental Design and Metadata
Experimental Design
| Sample Name | MSstats Condition | MSstats BioReplicate | Fraction Group | Fraction | Label |
|---|---|---|---|---|---|
| 1 | 1 | 1 | |||
| 1 | 1 | 1 | |||
| 2 | 1 | 1 | |||
| 3 | 1 | 1 | |||
| 4 | 1 | 1 | |||
| 5 | 1 | 1 | |||
| 6 | 1 | 1 | |||
| 2 | 2 | 2 | |||
| 7 | 1 | 1 | |||
| 8 | 1 | 1 | |||
| 9 | 1 | 1 | |||
| 10 | 1 | 1 | |||
| 11 | 1 | 1 | |||
| 12 | 1 | 1 |
Results Overview
Summary Table
| #Peptides Quantified | #Proteins Quantified |
|---|---|
| 3725 | 767 |
HeatMap
Pipeline Result Statistics
| Sample Name | MSstats_Condition | Fraction | #Peptide IDs | #Unambiguous Peptide IDs | #Modified Peptide IDs | #Protein (group) IDs |
|---|---|---|---|---|---|---|
| 1 | 1 | |||||
| 1 | 2871 | 2871 | 402 | 557 | ||
| 1 | 2877 | 2877 | 393 | 548 | ||
| 1 | 2513 | 2513 | 336 | 481 | ||
| 1 | 3001 | 3001 | 411 | 590 | ||
| 1 | 2941 | 2941 | 413 | 578 | ||
| 1 | 3020 | 3020 | 419 | 593 | ||
| 2 | 2 | |||||
| 1 | 2641 | 2641 | 350 | 522 | ||
| 1 | 2766 | 2766 | 361 | 563 | ||
| 1 | 3043 | 3043 | 408 | 615 | ||
| 1 | 2887 | 2887 | 387 | 580 | ||
| 1 | 2336 | 2336 | 313 | 456 | ||
| 1 | 2517 | 2517 | 340 | 509 |
Identification Summary
Number of Peptides identified Per Protein
ProteinGroups Count
Peptide ID Count
Modifications Per Raw File
The plot will show percentages, i.e. is normalized by the total number of peptide sequences (where different charge state counts as a separate peptide) per Raw file. The sum of frequencies may exceed 100% per Raw file, since a peptide can have multiple modifications.
E.g. given three peptides in a single Raw file1. _M(Oxidation (M))LVLDEADEM(Oxidation (M))LNK_
2. _(Acetyl (Protein N-term))M(Oxidation (M))YGLLLENLSEYIK_
3. DPFIANGER
, the following frequencies arise:
* 33% of 'Acetyl (Protein N-term)'* 33% of 'Oxidation (M)'
* 33% of '2 Oxidation (M)'
* 33% of 'Unmodified'
Thus, 33% of sequences are unmodified, implying 66% are modified at least once. If a modification, e.g. Oxidation(M), occurs multiple times in a single peptide it's listed as a separate modification (e.g. '2 Oxidation (M)' for double oxidation of a single peptide).
Quantification Analysis
Peptides Quantification Table
| PeptideID | Protein Name | Peptide Sequence | Best Search Score | Average Intensity | 1 | 2 |
|---|---|---|---|---|---|---|
| 1 | SRP14_HUMAN | AAAAAAAAAPAAAATAPTTAATTAATAAQ | 0.9909 | 5.4381 | 5.4440 | 5.4321 |
| 2 | RL4_HUMAN | AAAAAAALQAK | 0.9996 | 4.6753 | 4.6488 | 4.7002 |
| 3 | CLPX_HUMAN | AAAAADLANR | 0.9991 | 4.3438 | 4.1951 | 4.4205 |
| 4 | RCC2_HUMAN | AAAAAWEEPSSGNGTAR | 0.9994 | 4.0407 | 3.9916 | 4.0847 |
| 5 | TRUB1_HUMAN | AAAAVVAAAAR | 0.9996 | 4.2186 | 4.2661 | 3.8443 |
| 6 | EDC4_HUMAN | AAADTLQGPMQAAYR | 0.9996 | 4.7220 | 4.7436 | 4.6935 |
| 7 | MCCA_HUMAN | AAAKESLCQAALGLILK | 0.9996 | 5.2532 | 5.1854 | 5.3119 |
| 8 | RBM39_HUMAN | AAAMANNLQK | 0.9988 | 4.0772 | 3.9697 | 4.1078 |
| 9 | TTC4_HUMAN | AAAQYYLGNFR | 0.9932 | 4.0021 | 4.0316 | 3.8990 |
| 10 | UBE3A_HUMAN | AACSAAAMEEDSEASSSR | 0.9996 | 4.5588 | 4.6875 | 4.3269 |
| 11 | XPO2_HUMAN | AADEEAFEDNSEEYIRR | 0.9977 | 4.7202 | 4.6946 | 4.7491 |
| 12 | RN213_HUMAN | AADFLSEPEGGPEMAK | 0.9996 | 5.3026 | 5.5332 | 4.5048 |
| 13 | RN213_HUMAN | AADFLSEPEGGPEMAKEK | 0.9990 | 5.0719 | 5.2717 | 4.1652 |
| 14 | SRRM2_HUMAN | AAFGISDSYVDGSSFDPQRR | 0.9996 | 5.2061 | 5.1766 | 5.2338 |
| 15 | SYAM_HUMAN | AAFLNFFR | 0.9996 | 5.4961 | 5.4827 | 5.5091 |
| 16 | PUR2_HUMAN | AAGFKDPLLASGTDGVGTK | 0.9986 | 4.1988 | 4.2102 | 4.1497 |
| 17 | SYTM_HUMAN | AAGLVSDLDADSGLTLSR | 0.9981 | 4.7433 | 4.7657 | 4.7197 |
| 18 | RLA1_HUMAN | AAGVNVEPFWPGLFAK | 0.9996 | 4.5872 | 4.6028 | 4.5710 |
| 19 | TCPB_HUMAN | AAHSEGNTTAGLDMR | 0.9924 | 4.3590 | 4.3935 | 4.2806 |
| 20 | FAS_HUMAN | AALQEELQLCK | 0.9990 | 4.5873 | 4.5966 | 4.5793 |
| 21 | RS25_HUMAN | AALQELLSK | 0.9996 | 5.1240 | 5.1337 | 5.1141 |
| 22 | ECHB_HUMAN | AALTGLLHR | 0.9990 | 4.2079 | 4.2243 | 4.1943 |
| 23 | TBB6_HUMAN | AALVDLEPGTMDSVR | 0.9996 | 4.8027 | 4.7921 | 4.8129 |
| 24 | ADPPT_HUMAN | AAMAGRLMIR | 0.9970 | 4.3440 | 4.3259 | 4.4095 |
| 25 | NU214_HUMAN | AAPGPGPSTFSFVPPSK | 0.9996 | 4.7709 | 4.7800 | 4.7631 |
| 26 | TBCD_HUMAN | AASAAFQENVGR | 0.9997 | 3.9786 | 3.9786 | |
| 27 | RN213_HUMAN | AASEAPEEEVSLPWVHLAYQR | 0.9996 | 5.3156 | 5.3156 | |
| 28 | TCOF_HUMAN | AASVPVKGSLGQGTAPVLPGK | 0.9996 | 4.5654 | 4.4186 | 4.6051 |
| 29 | MCCB_HUMAN | AATGEEVSAEDLGGADLHCR | 0.9982 | 4.4101 | 4.3451 | 4.4393 |
| 30 | DNJC7_HUMAN | AATLMMLGR | 0.9950 | 4.9647 | 4.9603 | 4.9691 |
| 31 | DYHC1_HUMAN | AATSPALFNR | 0.9997 | 4.0774 | 4.1210 | 3.9121 |
| 32 | UBA1_HUMAN | AAVATFLQSVQVPEFTPK | 0.9993 | 6.7711 | 6.8252 | 6.7093 |
| 33 | EDC3_HUMAN | AAVAWANQNR | 0.9997 | 3.9743 | 4.0032 | 3.8737 |
| 34 | CH60_HUMAN | AAVEEGIVLGGGCALLR | 0.9996 | 5.0614 | 5.0223 | 5.0973 |
| 35 | DPOG1_HUMAN | AAVPGQPLALTAR | 0.9996 | 4.7643 | 4.7132 | 4.8100 |
| 36 | FAKD5_HUMAN | AAVPLGGFLCNVADK | 0.9993 | 5.0217 | 5.0119 | 5.0360 |
| 37 | IRS4_HUMAN | AAVSAFPTDSLER | 0.9996 | 5.1675 | 5.2056 | 5.1256 |
| 38 | ADT2_HUMAN | AAYFGIYDTAK | 0.9996 | 5.0209 | 5.0403 | 5.0007 |
| 39 | ADT3_HUMAN | AAYFGVYDTAK | 0.9974 | 4.3526 | 4.3888 | 4.2992 |
| 40 | UBP11_HUMAN | AAYVLFYQR | 0.9996 | 4.5635 | 4.6816 | 4.2890 |
| 41 | DDX41_HUMAN | ACDESVLMDLK | 0.9968 | 4.3978 | 4.2691 | 4.4502 |
| 42 | NU214_HUMAN | ACFQVGTSEEMK | 0.9997 | 4.2240 | 4.2240 | |
| 43 | FAS_HUMAN | ACLDTAVENMPSLK | 0.9996 | 4.5301 | 4.5389 | 4.5211 |
| 44 | DAAF5_HUMAN | ACLQPSQDPQMR | 0.9996 | 4.3545 | 4.3545 | |
| 45 | RS3A_HUMAN | ACQSIYPLHDVFVR | 0.9994 | 3.9083 | 3.7995 | 3.9682 |
| 46 | PYC_HUMAN | ACTELGIR | 0.9949 | 6.3404 | 6.3142 | 6.3675 |
| 47 | RS3_HUMAN | ACYGVLR | 0.9996 | 4.1379 | 4.0071 | 4.1910 |
| 48 | PYC_HUMAN | ADEAYLIGR | 0.9996 | 6.4957 | 6.4781 | 6.5126 |
| 49 | PRDX1_HUMAN | ADEGISFR | 0.9963 | 5.0024 | 5.0223 | 4.9772 |
| 50 | PYC_HUMAN | ADFAQACQDAGVR | 0.9996 | 7.0529 | 7.0255 | 7.0786 |
Protein Quantification Table
| ProteinID | Protein Name | Number of Peptides | Average Intensity | 1 | 2 |
|---|---|---|---|---|---|
| 1 | 1433T_HUMAN | 3 | 4.7074 | 4.7155 | 4.7005 |
| 2 | 2A5D_HUMAN | 2 | 4.3485 | 4.4411 | 4.2108 |
| 3 | 3MG_HUMAN | 2 | 4.3551 | 4.4182 | 4.2709 |
| 4 | 4ET_HUMAN | 1 | 4.6145 | 4.5966 | 4.6289 |
| 5 | AAAS_HUMAN | 1 | 4.2397 | 4.1921 | 4.2574 |
| 6 | AAAT_HUMAN | 1 | 4.0604 | 3.9195 | 4.1666 |
| 7 | AACS_HUMAN | 2 | 4.3285 | 4.4233 | 4.1704 |
| 8 | AAPK1_HUMAN | 2 | 4.2435 | 4.2944 | 4.0687 |
| 9 | AASS_HUMAN | 2 | 4.1258 | 4.1258 | |
| 10 | ABCF3_HUMAN | 1 | 4.1532 | 4.1532 | |
| 11 | ACACA_HUMAN | 218 | 6.4298 | 6.4275 | 6.4321 |
| 12 | ACACB_HUMAN | 84 | 5.3517 | 5.3085 | 5.3902 |
| 13 | ACADM_HUMAN | 3 | 4.3018 | 4.0664 | 4.3156 |
| 14 | ACDSB_HUMAN | 1 | 4.6824 | 4.7100 | 4.6606 |
| 15 | ACLY_HUMAN | 3 | 4.2730 | 4.1253 | 4.3544 |
| 16 | ACSF2_HUMAN | 9 | 4.4159 | 4.4001 | 4.4315 |
| 17 | ACSF3_HUMAN | 2 | 4.6234 | 4.6688 | 4.5781 |
| 18 | ACSL3_HUMAN | 2 | 4.1244 | 3.5794 | 4.2172 |
| 19 | ACTB_HUMAN;ACTG_HUMAN | 12 | 5.0384 | 4.8963 | 5.1044 |
| 20 | ADPPT_HUMAN | 1 | 4.3440 | 4.3259 | 4.4095 |
| 21 | ADRM1_HUMAN | 1 | 4.0016 | 4.0016 | |
| 22 | ADRO_HUMAN | 6 | 4.4665 | 4.3656 | 4.5260 |
| 23 | ADT2_HUMAN | 12 | 5.2115 | 5.2239 | 5.1990 |
| 24 | ADT3_HUMAN | 2 | 5.0502 | 5.0404 | 5.0609 |
| 25 | AFG2H_HUMAN;PRS8_HUMAN | 1 | 4.3273 | 4.0658 | 4.3738 |
| 26 | AHSA1_HUMAN | 3 | 4.0511 | 3.8600 | 4.0726 |
| 27 | AIFM3_HUMAN | 1 | 4.5212 | 4.5670 | 4.4588 |
| 28 | AIP_HUMAN | 1 | 4.7044 | 4.7467 | 4.6673 |
| 29 | AL3A2_HUMAN | 1 | 4.0519 | 4.0519 | |
| 30 | ALBU_HUMAN | 5 | 5.4180 | 5.4045 | 5.4307 |
| 31 | ALDOA_HUMAN | 7 | 4.4211 | 4.1970 | 4.4860 |
| 32 | ALDOC_HUMAN | 1 | 5.5951 | 5.6728 | 5.5005 |
| 33 | AMPD1_HUMAN | 1 | 4.1645 | 4.1645 | |
| 34 | ANKH1_HUMAN | 25 | 4.7226 | 4.6686 | 4.7627 |
| 35 | ANM3_HUMAN | 1 | 4.2971 | 4.3216 | 4.2711 |
| 36 | ANXA2_HUMAN | 2 | 4.4899 | 4.4994 | 4.4784 |
| 37 | ARAF_HUMAN;BRAF_HUMAN;RAF1_HUMAN | 1 | 4.2792 | 4.2792 | |
| 38 | ARFG1_HUMAN | 1 | 4.2983 | 4.3421 | 4.1318 |
| 39 | ARGL1_HUMAN | 6 | 4.9927 | 4.9777 | 5.0068 |
| 40 | ARHG2_HUMAN | 9 | 4.5272 | 4.5799 | 4.4636 |
| 41 | ARHG6_HUMAN;ARHG7_HUMAN | 1 | 4.3469 | 4.3692 | 4.2722 |
| 42 | ARHGB_HUMAN | 1 | 4.4778 | 4.4778 | |
| 43 | ARI1_HUMAN | 4 | 4.7339 | 4.8060 | 4.6313 |
| 44 | ARI2_HUMAN | 2 | 4.3654 | 4.3958 | 4.2973 |
| 45 | ARMC6_HUMAN | 3 | 4.2247 | 4.2407 | 4.0815 |
| 46 | ASCC2_HUMAN | 1 | 4.6552 | 4.7229 | 4.5750 |
| 47 | ASCC3_HUMAN | 8 | 4.5224 | 4.5540 | 4.4751 |
| 48 | ASNS_HUMAN | 9 | 4.7458 | 4.7941 | 4.5946 |
| 49 | ASTRA_HUMAN | 1 | 4.7560 | 4.8323 | 4.5454 |
| 50 | AT1A1_HUMAN;AT1A3_HUMAN | 2 | 4.5193 | 4.3879 | 4.5969 |
Intensity Distribution
Standard Deviation of Intensity
MS1 Analysis
Total Ion Chromatograms
MS1 Base Peak Chromatograms
MS1 Peaks
General stats for MS1 information
| File | Acquisition Date Time | log10(Total Current) | log10(Scan Current) |
|---|---|---|---|
| 20221028_FL_Lu_SV_Set12_A1 | 2022-10-29 22:11:31 | 11.7957 | 11.3888 |
| 20221028_FL_Lu_SV_Set12_A2 | 2022-10-30 01:33:52 | 11.8052 | 34.2775 |
| 20221028_FL_Lu_SV_Set12_A3 | 2022-10-30 13:47:37 | 11.7305 | 11.3256 |
| 20221028_FL_Lu_SV_Set12_A4 | 2022-10-30 06:40:43 | 11.8220 | 11.4029 |
| 20221028_FL_Lu_SV_Set12_A5 | 2022-10-30 09:03:01 | 11.8009 | 11.3846 |
| 20221028_FL_Lu_SV_Set12_A6 | 2022-10-30 01:56:09 | 11.8099 | 11.4013 |
| 20221028_FL_Lu_SV_Set12_B1 | 2022-10-29 12:42:17 | 11.7506 | 11.3651 |
| 20221028_FL_Lu_SV_Set12_B2 | 2022-10-30 11:25:17 | 11.8033 | 11.3784 |
| 20221028_FL_Lu_SV_Set12_B3 | 2022-10-29 15:04:34 | 11.8335 | 11.4320 |
| 20221028_FL_Lu_SV_Set12_B4 | 2022-10-30 04:18:27 | 11.8097 | 11.4051 |
| 20221028_FL_Lu_SV_Set12_B5 | 2022-10-29 17:26:54 | 11.6971 | 11.3046 |
| 20221028_FL_Lu_SV_Set12_B6 | 2022-10-29 19:49:11 | 11.7172 | 11.3146 |
Ms1 Area Distribution
MS2 and Spectral Stats
Number of Peaks per MS/MS spectrum
Peak Intensity Distribution
Distribution of Precursor Charges
Charge-state of Per File
RT Quality Control
IDs over RT
This plot allows to judge column occupancy over retention time. Ideally, the LC gradient is chosen such that the number of identifications (here, after FDR filtering) is uniform over time, to ensure consistent instrument duty cycles. Sharp peaks and uneven distribution of identifications over time indicate potential for LC gradient optimization. See [Moruz 2014, DOI: 10.1002/pmic.201400036](https://pubmed.ncbi.nlm.nih.gov/24700534/) for details.