A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.
/home/runner/work/pmultiqc/pmultiqc/data
pmultiqc
pmultiqc is a MultiQC module to show the pipeline performance of mass spectrometry based quantification pipelines such as nf-core/quantms, MaxQuant, and DIA-NN.https://github.com/bigbio/pmultiqc
Experimental Design and Metadata
Parameters
| No. | Parameter | Value |
|---|---|---|
| 1 | Version | 1.5.2.8 |
| 2 | User name | cbielow |
| 3 | Machine name | CD02-WIN7 |
| 4 | Date of writing | 08/05/2015 11:38:59 |
| 5 | Fixed modifications | Carbamidomethyl (C) |
| 6 | Decoy mode | revert |
| 7 | Special AAs | KR |
| 8 | Include contaminants | True |
| 9 | MS/MS tol. (FTMS) | 20 ppm |
| 10 | Top MS/MS peaks per 100 Da. (FTMS) | 12 |
| 11 | MS/MS deisotoping (FTMS) | True |
| 12 | MS/MS tol. (ITMS) | 0.5 Da |
| 13 | Top MS/MS peaks per 100 Da. (ITMS) | 8 |
| 14 | MS/MS deisotoping (ITMS) | False |
| 15 | MS/MS tol. (TOF) | 40 ppm |
| 16 | Top MS/MS peaks per 100 Da. (TOF) | 10 |
| 17 | MS/MS deisotoping (TOF) | True |
| 18 | MS/MS tol. (Unknown) | 0.5 Da |
| 19 | Top MS/MS peaks per 100 Da. (Unknown) | 8 |
| 20 | MS/MS deisotoping (Unknown) | False |
| 21 | PSM FDR | 0.0 |
| 22 | Protein FDR | 0.0 |
| 23 | Site FDR | 0.0 |
| 24 | Use Normalized Ratios For Occupancy | True |
| 25 | Min. peptide Length | 7 |
| 26 | Min. score for unmodified peptides | 0 |
| 27 | Min. score for modified peptides | 40 |
| 28 | Min. delta score for unmodified peptides | 0 |
| 29 | Min. delta score for modified peptides | 6 |
| 30 | Min. unique peptides | 0 |
| 31 | Min. razor peptides | 1 |
| 32 | Min. peptides | 1 |
| 33 | Use only unmodified peptides and | True |
| 34 | Modifications included in protein quantification | Acetyl (Protein N-term);Oxidation (M) |
| 35 | Peptides used for protein quantification | Razor |
| 36 | Discard unmodified counterpart peptides | True |
| 37 | Min. ratio count | 2 |
| 38 | Re-quantify | False |
| 39 | Use delta score | False |
| 40 | iBAQ | False |
| 41 | iBAQ log fit | False |
| 42 | Match between runs | True |
| 43 | Matching time window [min] | 0.7 |
| 44 | Alignment time window [min] | 20 |
| 45 | Find dependent peptides | False |
| 46 | Fasta file | crap_withMycoplasma.fasta;uniprot_human_canonical_and_isoforms_20130513.fasta |
| 47 | Labeled amino acid filtering | True |
| 48 | Site tables | Oxidation (M)Sites.txt |
| 49 | RT shift | False |
| 50 | Advanced ratios | True |
| 51 | First pass AIF correlation | 0.8 |
Results Overview
Summary Table
| #MS2 Spectra | #Identified MS2 Spectra | %Identified MS2 Spectra | #Peptides Identified | #Proteins Identified | #Proteins Quantified |
|---|---|---|---|---|---|
| 201567 | 84900 | 42.12% | 28949 | 4053 | 4048 |
HeatMap
Identification Summary
Number of Peptides identified Per Protein
ProteinGroups Count [MBR gain: +8.8%]
Peptide ID Count [MBR gain: +18.46%]
Missed Cleavages Per Raw File
In the rare case that 'no enzyme' was specified in MaxQuant, neither scores nor plots are shown.
Modifications Per Raw File
The plot will show percentages, i.e. is normalized by the total number of peptide sequences (where different charge state counts as a separate peptide) per Raw file. The sum of frequencies may exceed 100% per Raw file, since a peptide can have multiple modifications.
E.g. given three peptides in a single Raw file1. _M(Oxidation (M))LVLDEADEM(Oxidation (M))LNK_
2. _(Acetyl (Protein N-term))M(Oxidation (M))YGLLLENLSEYIK_
3. DPFIANGER
, the following frequencies arise:
* 33% of 'Acetyl (Protein N-term)'* 33% of 'Oxidation (M)'
* 33% of '2 Oxidation (M)'
* 33% of 'Unmodified'
Thus, 33% of sequences are unmodified, implying 66% are modified at least once. If a modification, e.g. Oxidation(M), occurs multiple times in a single peptide it's listed as a separate modification (e.g. '2 Oxidation (M)' for double oxidation of a single peptide).
MS/MS Identified Per Raw File
Search Engine Scores
Summary of Andromeda Scores
Contaminants
Top5 Contaminants Per Raw File
Potential Contaminants Per File
Quantification Analysis
Protein Intensity Distribution
LFQ Intensity Distribution
Peptide Intensity Distribution
PCA of Raw Intensity
PCA of LFQ Intensity
Peptides Quantification Table
| PeptideID | Protein Name | Peptide Sequence | Best Search Score | Average Intensity |
|---|---|---|---|---|
| 1 | Q86U42-2;Q86U42 | AAAAAAAAAAGAAGGR | 128.6800 | 7.1389 |
| 2 | P37108 | AAAAAAAAAPAAAATAPTTAATTAATAAQ | 82.8310 | 7.1284 |
| 3 | P36578 | AAAAAAALQAK | 135.4300 | 7.8269 |
| 4 | Q9H3H3-2;Q9H3H3-3 | AAAAAAAVAGVGR | 108.3100 | 6.4210 |
| 5 | Q96P70 | AAAAAAGAASGLPGPVAQGLK | 85.9370 | 6.6024 |
| 6 | P28482 | AAAAAAGAGPEMVR | 94.1220 | 6.4680 |
| 7 | Q8WVM8 | AAAAAATAAAAASIR | 146.5900 | 6.6441 |
| 8 | Q86X55-1;Q86X55;Q86X55-2 | AAAAAAVGPGAGGAGSAVPGGAGPCATVSVFPGAR | 59.5360 | 6.6710 |
| 9 | O00410 | AAAAAEQQQFYLLLGNLLSPDNVVR | 99.1100 | 6.7391 |
| 10 | O00410 | AAAAAEQQQFYLLLGNLLSPDNVVRK | 74.7030 | 6.7286 |
| 11 | P86791;P86790 | AAAAAGAGSGPWAAQEK | 82.9420 | 6.2996 |
| 12 | Q9Y2Z0-2;Q9Y2Z0 | AAAAAGTATSQR | 124.4200 | 7.5048 |
| 13 | Q7L5D6 | AAAAAMAEQESAR | 117.0300 | 6.0297 |
| 14 | Q13049 | AAAAASHLNLDALR | 88.7060 | 6.3835 |
| 15 | Q9P258 | AAAAAWEEPSSGNGTAR | 137.2700 | 6.1486 |
| 16 | O43324-2;O43324 | AAAAELSLLEK | 169.5200 | 6.9630 |
| 17 | Q96KQ7-2;Q96KQ7;Q96KQ7-3 | AAAAGAAAAAAAEGEAPAEMGALLLEK | 89.4620 | 5.9631 |
| 18 | Q00796 | AAAAKPNNLSLVVHGPGDLR | 112.8200 | 7.1325 |
| 19 | P55036 | AAAASAAEAGIATTGTEDSDDALLK | 54.0470 | 6.4029 |
| 20 | Q15005 | AAAAVQGGR | 127.4600 | 6.8615 |
| 21 | Q8N1G4 | AAAAVSESWPELELAER | 104.2100 | 6.1032 |
| 22 | O00231;O00231-2 | AAAAVVEFQR | 105.9800 | 6.9886 |
| 23 | Q8NI27 | AAAAVVVPAEWIK | 59.2270 | 6.5836 |
| 24 | P30153 | AAADGDDSLYPIAVLIDELR | 85.2030 | 6.1322 |
| 25 | Q9UNF1-2;Q9UNF1 | AAAEAAAEAK | 91.7010 | 5.2648 |
| 26 | Q9NQP4 | AAAEDVNVTFEDQQK | 147.7500 | 5.9965 |
| 27 | P55263;P55263-3 | AAAEEEPKPK | 86.8980 | 6.2054 |
| 28 | Q99567 | AAAEGPVGDGELWQTWLPNHVVFLR | 80.2360 | 6.2906 |
| 29 | Q13523 | AAAETQSLR | 76.1700 | 6.4857 |
| 30 | P02786 | AAAEVAGQFVIK | 117.2000 | 6.6548 |
| 31 | Q9Y490 | AAAFEEQENETVVVK | 130.4700 | 6.2308 |
| 32 | O94826 | AAAFEQLQK | 78.5560 | 6.9091 |
| 33 | P35221;P35221-2 | AAAGEFADDPCSSVK | 120.2100 | 6.7622 |
| 34 | Q96C19 | AAAGELQEDSGLCVLAR | 170.4700 | 6.5967 |
| 35 | Q9UL25 | AAAGGGGGGAAAAGR | 182.7100 | 6.7549 |
| 36 | Q96T51;Q96T51-3 | AAAGLGGGDSGDGTAR | 108.6600 | 6.6020 |
| 37 | P51970 | AAAHHYGAQCDKPNK | 44.4360 | 5.2035 |
| 38 | P08107;P08107-2 | AAAIGIDLGTTYSCVGVFQHGK | 60.0620 | 6.7559 |
| 39 | Q14008-2;Q14008;Q14008-3 | AAALATVNAWAEQTGMK | 172.4200 | 6.1280 |
| 40 | P31948 | AAALEFLNR | 82.2870 | 6.3951 |
| 41 | P31948 | AAALEFLNRFEEAK | 137.8100 | 7.3349 |
| 42 | O60716-13;O60716-11;O60716-10;O60716-9;O60716-21;O60716-19;O60716-16;O60716-18;O60716-15;O60716-17;O60716-14;O60716-12;O60716-5;O60716-3;O60716-2;O60716;O60716-24;O60716-23;O60716-22;O60716-20;O60716-8;O60716-7;O60716-6;O60716-4;O60716-29;O60716-27;O60716-26;O60716-25;O60716-32;O60716-31;O60716-30;O60716-28 | AAALVLQTIWGYK | 145.8100 | 6.3166 |
| 43 | Q14498-2;Q14498;Q14498-3 | AAAMANNLQK | 73.2330 | 5.4044 |
| 44 | P62877 | AAAMDVDTPSGTNSGAGK | 168.4200 | 5.9619 |
| 45 | P62877 | AAAMDVDTPSGTNSGAGKK | 186.7200 | 6.6983 |
| 46 | Q9NX63 | AAANEQLTR | 107.4500 | 6.4553 |
| 47 | P26641 | AAAPAPEEEMDECEQALAAEPK | 131.5600 | 6.6380 |
| 48 | P20810-7;P20810-6;P20810-5;P20810-4;P20810-8;P20810;P20810-2;P20810-3 | AAAPAPVSEAVCR | 90.7930 | 7.3560 |
| 49 | Q12765 | AAAPPSYCFVAFPPR | 56.5690 | 5.7088 |
| 50 | P53618 | AAAQCYIDLIIK | 77.6440 | 6.8017 |
Protein Quantification Table
| ProteinID | Protein Name | Number of Peptides | Average Intensity |
|---|---|---|---|
| 1 | A0AV96-2;A0AV96 | 2 | 5.8834 |
| 2 | A0AVT1 | 1 | 6.9224 |
| 3 | A0AVT1;A0AVT1-2 | 19 | 6.4333 |
| 4 | A0AVT1;A0AVT1-3 | 1 | 6.0380 |
| 5 | A0AVT1;A0AVT1-3;A0AVT1-4 | 6 | 6.3704 |
| 6 | A0FGR8-2 | 1 | 5.4654 |
| 7 | A0FGR8-2;A0FGR8;A0FGR8-6 | 1 | 5.5375 |
| 8 | A0FGR8-2;A0FGR8;A0FGR8-6;A0FGR8-4 | 6 | 6.5283 |
| 9 | A0FGR8-2;A0FGR8;A0FGR8-6;A0FGR8-4;A0FGR8-5 | 1 | 6.6685 |
| 10 | A0FGR8-2;A0FGR8;A0FGR8-6;A0FGR8-5 | 4 | 6.4869 |
| 11 | A0MZ66-2;A0MZ66-8;A0MZ66-4;A0MZ66-5;A0MZ66-6;A0MZ66;A0MZ66-3 | 2 | 6.2240 |
| 12 | A1L0T0 | 12 | 6.3070 |
| 13 | A2RRP1-2;A2RRP1 | 3 | 5.7738 |
| 14 | A4D1E9 | 1 | 5.7467 |
| 15 | A4D1E9;A4D1E9-2 | 1 | 6.2192 |
| 16 | A4UGR9-2;A4UGR9-3;A4UGR9 | 1 | 6.4718 |
| 17 | A5D8W1-2;A5D8W1-5;A5D8W1 | 1 | 6.5837 |
| 18 | A5D8W1-2;A5D8W1-5;A5D8W1;A5D8W1-4;A5D8W1-3 | 1 | 6.5649 |
| 19 | A5YKK6-2;A5YKK6 | 1 | 6.1066 |
| 20 | A5YKK6-2;A5YKK6;A5YKK6-3 | 4 | 5.8559 |
| 21 | A5YKK6-2;A5YKK6;A5YKK6-3;A5YKK6-4 | 4 | 6.0792 |
| 22 | A6NDG6 | 4 | 6.1718 |
| 23 | A6NDU8 | 1 | 6.1976 |
| 24 | A6NFZ4 | 1 | 5.3669 |
| 25 | A6NHL2-2;A6NHL2 | 1 | 6.6717 |
| 26 | A6NHQ2 | 1 | 6.9258 |
| 27 | A6NHR9 | 1 | 6.3482 |
| 28 | A6NHR9;A6NHR9-2 | 9 | 6.1953 |
| 29 | A6NHR9;A6NHR9-2;A6NHR9-3 | 6 | 6.3258 |
| 30 | A6NKF9;B7ZAQ6-2;B7ZAQ6-3;P0CG08;B7ZAQ6 | 1 | 5.9271 |
| 31 | A6NKT7;Q7Z3J3 | 1 | 5.9068 |
| 32 | A6NKT7;Q7Z3J3;P0DJD0;P0DJD1;Q8IWJ2 | 1 | 5.6636 |
| 33 | A8MT69 | 1 | 5.4836 |
| 34 | A8MXV4 | 3 | 6.2205 |
| 35 | C9JLW8 | 1 | 6.1450 |
| 36 | CONTAMINANT_sp|ANXA5_HUMAN|;P08758 | 25 | 7.4325 |
| 37 | CONTAMINANT_sp|B2MG_HUMAN|;P61769 | 3 | 7.6794 |
| 38 | CONTAMINANT_sp|BID_HUMAN|;P55957;P55957-2 | 1 | 5.7736 |
| 39 | CONTAMINANT_sp|BID_HUMAN|;P55957;P55957-2;P55957-3 | 1 | 6.5969 |
| 40 | CONTAMINANT_sp|BID_HUMAN|;P55957;P55957-2;P55957-4 | 4 | 6.2732 |
| 41 | CONTAMINANT_sp|CATA_HUMAN|;P04040 | 13 | 6.7989 |
| 42 | CONTAMINANT_sp|CATD_HUMAN|;P07339 | 21 | 7.2581 |
| 43 | CONTAMINANT_sp|CYC_HUMAN|;P99999 | 5 | 6.9857 |
| 44 | CONTAMINANT_sp|CYC_HUMAN|;P99999;CONTAMINANT_sp|CYC_HORSE|;CON__P62894 | 2 | 7.0820 |
| 45 | CONTAMINANT_sp|NEDD8_HUMAN|;Q15843 | 2 | 6.6189 |
| 46 | CONTAMINANT_sp|NQO2_HUMAN|;P16083 | 2 | 6.4140 |
| 47 | CONTAMINANT_sp|PRDX1_HUMAN|;Q06830 | 12 | 7.8054 |
| 48 | CONTAMINANT_sp|PRDX1_HUMAN|;Q06830;P32119 | 1 | 8.0652 |
| 49 | CONTAMINANT_sp|PRDX1_HUMAN|;Q06830;Q13162 | 2 | 7.8547 |
| 50 | CONTAMINANT_sp|RS27A_HUMAN|;P62979 | 2 | 7.2087 |
MS2 and Spectral Stats
Charge-state of Per File
This plot ignores charge states of contaminants.
MS/MS Counts Per 3D-peak
If DIA-Data: this metric is skipped.
Mass Error Trends
Delta Mass [Da]
Delta Mass [ppm]
Uncalibrated Mass Error
RT Quality Control
IDs over RT
This plot allows to judge column occupancy over retention time. Ideally, the LC gradient is chosen such that the number of identifications (here, after FDR filtering) is uniform over time, to ensure consistent instrument duty cycles. Sharp peaks and uneven distribution of identifications over time indicate potential for LC gradient optimization. See [Moruz 2014, DOI: 10.1002/pmic.201400036](https://pubmed.ncbi.nlm.nih.gov/24700534/) for details.