A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.
/home/runner/work/pmultiqc/pmultiqc/data_temp
pmultiqc
pmultiqc is a MultiQC module to show the pipeline performance of mass spectrometry based quantification pipelines such as nf-core/quantms, MaxQuant, DIA-NN, and FragPipe.https://github.com/bigbio/pmultiqc
Results Overview
Summary Table
| #Peptides Quantified | #Proteins Quantified |
|---|---|
| 8051 | 2165 |
HeatMap
Pipeline Result Statistics
| Sample Name | #Peptide IDs | #Unambiguous Peptide IDs | #Modified Peptide IDs | #Protein (group) IDs |
|---|---|---|---|---|
| 20230626_KK_SC_IFNy_01_A7_1_14074 | 1422 | 1193 | 0 | 580 |
| 20230626_KK_SC_IFNy_02_B7_1_14075 | 1462 | 1236 | 0 | 592 |
| 20230626_KK_SC_IFNy_03_C7_1_14076 | 1374 | 1154 | 0 | 553 |
| 20230626_KK_SC_IFNy_04_D7_1_14077 | 2094 | 1809 | 0 | 786 |
| 20230626_KK_SC_IFNy_05_E7_1_14078 | 1635 | 1376 | 0 | 604 |
| 20230626_KK_SC_IFNy_06_F7_1_14079 | 1824 | 1576 | 0 | 664 |
| 20230626_KK_SC_IFNy_07_G7_1_14080 | 2397 | 2106 | 0 | 859 |
| 20230626_KK_SC_IFNy_09_A8_1_14083 | 1623 | 1380 | 0 | 595 |
| 20230626_KK_SC_IFNy_10_B8_1_14084 | 1580 | 1352 | 0 | 600 |
| 20230626_KK_SC_IFNy_11_A6_1_14089 | 1353 | 1151 | 0 | 584 |
| 20230626_KK_SC_IFNy_12_B6_1_14090 | 1559 | 1318 | 0 | 634 |
| 20230626_KK_SC_IFNy_13_C6_1_14091 | 1447 | 1239 | 0 | 590 |
| 20230626_KK_SC_IFNy_14_D6_1_14092 | 1554 | 1323 | 0 | 646 |
| 20230626_KK_SC_IFNy_15_E6_1_14093 | 1584 | 1329 | 0 | 645 |
| 20230626_KK_SC_IFNy_16_F6_1_14094 | 1917 | 1646 | 0 | 754 |
| 20230626_KK_SC_IFNy_17_G6_1_14095 | 1949 | 1669 | 0 | 700 |
| 20230626_KK_SC_IFNy_19_A7_1_14107 | 2610 | 2298 | 0 | 902 |
| 20230626_KK_SC_IFNy_20_B7_1_14108 | 1911 | 1638 | 0 | 734 |
| 20230626_KK_SC_IFNy_21_C7_1_14109 | 1933 | 1667 | 0 | 763 |
| 20230626_KK_SC_IFNy_22_D7_1_14110 | 1562 | 1332 | 0 | 621 |
| 20230626_KK_SC_IFNy_23_E7_1_14111 | 1320 | 1106 | 0 | 545 |
| 20230626_KK_SC_IFNy_24_F7_1_14112 | 1851 | 1584 | 0 | 712 |
| 20230626_KK_SC_IFNy_25_G7_1_14113 | 1165 | 965 | 0 | 494 |
| 20230626_KK_SC_IFNy_27_A8_1_14125 | 2032 | 1759 | 0 | 755 |
| 20230626_KK_SC_IFNy_28_B8_1_14126 | 1353 | 1135 | 0 | 583 |
| 20230626_KK_SC_IFNy_29_C8_1_14127 | 1486 | 1260 | 0 | 631 |
| 20230626_KK_SC_IFNy_30_D8_1_14128 | 1484 | 1254 | 0 | 584 |
| 20230626_KK_SC_IFNy_31_E8_1_14129 | 1190 | 1006 | 0 | 537 |
| 20230626_KK_SC_IFNy_32_F8_1_14130 | 1321 | 1109 | 0 | 581 |
| 20230626_KK_SC_IFNy_33_G8_1_14131 | 1158 | 973 | 0 | 508 |
| 20230626_KK_SC_IFNy_35_A9_1_14143 | 2298 | 2009 | 0 | 765 |
| 20230626_KK_SC_IFNy_36_B9_1_14144 | 1551 | 1335 | 0 | 609 |
| 20230626_KK_SC_IFNy_37_C9_1_14145 | 1825 | 1584 | 0 | 721 |
| 20230626_KK_SC_IFNy_38_D9_1_14146 | 2343 | 2043 | 0 | 883 |
| 20230626_KK_SC_IFNy_39_E9_1_14147 | 1027 | 860 | 0 | 421 |
| 20230626_KK_SC_IFNy_40_F9_1_14148 | 2170 | 1865 | 0 | 780 |
| 20230626_KK_SC_IFNy_41_G9_1_14149 | 1472 | 1255 | 0 | 597 |
| 20230626_KK_SC_IFNy_42_H9_1_14150 | 1444 | 1231 | 0 | 577 |
| 20230626_KK_SC_IFNy_43_A10_1_14161 | 1414 | 1199 | 0 | 611 |
| 20230626_KK_SC_IFNy_44_B10_1_14162 | 1714 | 1478 | 0 | 681 |
| 20230626_KK_SC_IFNy_45_C10_1_14163 | 1570 | 1337 | 0 | 629 |
| 20230626_KK_SC_IFNy_46_D10_1_14164 | 2141 | 1853 | 0 | 802 |
| 20230626_KK_SC_IFNy_47_E10_1_14165 | 1558 | 1342 | 0 | 619 |
| 20230626_KK_SC_IFNy_49_G10_1_14167 | 1171 | 980 | 0 | 498 |
| 20230626_KK_SC_control_01_A6_1_14065 | 1909 | 1650 | 0 | 769 |
| 20230626_KK_SC_control_02_B6_1_14066 | 2615 | 2278 | 0 | 926 |
| 20230626_KK_SC_control_03_C6_1_14067 | 1505 | 1268 | 0 | 630 |
| 20230626_KK_SC_control_04_D6_1_14068 | 538 | 429 | 0 | 252 |
| 20230626_KK_SC_control_05_E6_1_14069 | 1655 | 1425 | 0 | 647 |
| 20230626_KK_SC_control_06_F6_1_14070 | 1660 | 1421 | 0 | 636 |
| 20230626_KK_SC_control_07_G6_1_14071 | 3834 | 3363 | 0 | 1119 |
| 20230626_KK_SC_control_09_A5_1_14086 | 593 | 481 | 0 | 275 |
| 20230626_KK_SC_control_10_B5_1_14087 | 600 | 471 | 0 | 258 |
| 20230626_KK_SC_control_11_A5_1_14098 | 1696 | 1449 | 0 | 659 |
| 20230626_KK_SC_control_12_B5_1_14099 | 1756 | 1490 | 0 | 690 |
| 20230626_KK_SC_control_13_C5_1_14100 | 1564 | 1351 | 0 | 626 |
| 20230626_KK_SC_control_14_D5_1_14101 | 1802 | 1552 | 0 | 706 |
| 20230626_KK_SC_control_15_E5_1_14102 | 1437 | 1229 | 0 | 582 |
| 20230626_KK_SC_control_16_F5_1_14103 | 1519 | 1310 | 0 | 623 |
| 20230626_KK_SC_control_17_G5_1_14104 | 1402 | 1180 | 0 | 566 |
| 20230626_KK_SC_control_19_A4_1_14116 | 1515 | 1305 | 0 | 597 |
| 20230626_KK_SC_control_20_B4_1_14117 | 1878 | 1669 | 0 | 723 |
| 20230626_KK_SC_control_21_C4_1_14118 | 2701 | 2358 | 0 | 904 |
| 20230626_KK_SC_control_22_D4_1_14119 | 1818 | 1581 | 0 | 700 |
| 20230626_KK_SC_control_23_E4_1_14120 | 2064 | 1778 | 0 | 733 |
| 20230626_KK_SC_control_24_F4_1_14121 | 1779 | 1536 | 0 | 705 |
| 20230626_KK_SC_control_25_G4_1_14122 | 1330 | 1121 | 0 | 577 |
| 20230626_KK_SC_control_26_H4_1_14123 | 1696 | 1462 | 0 | 662 |
| 20230626_KK_SC_control_28_B3_1_14135 | 2398 | 2072 | 0 | 856 |
| 20230626_KK_SC_control_29_C3_1_14136 | 2220 | 1944 | 0 | 807 |
| 20230626_KK_SC_control_30_D3_1_14137 | 1929 | 1655 | 0 | 721 |
| 20230626_KK_SC_control_31_E3_1_14138 | 1560 | 1329 | 0 | 612 |
| 20230626_KK_SC_control_32_F3_1_14139 | 1216 | 1029 | 0 | 538 |
| 20230626_KK_SC_control_33_G3_1_14140 | 2314 | 2010 | 0 | 859 |
| 20230626_KK_SC_control_35_A2_1_14152 | 1948 | 1689 | 0 | 766 |
| 20230626_KK_SC_control_36_B2_1_14153 | 2077 | 1803 | 0 | 783 |
| 20230626_KK_SC_control_37_C2_1_14154 | 4058 | 3580 | 0 | 1247 |
| 20230626_KK_SC_control_38_D2_1_14155 | 778 | 653 | 0 | 285 |
| 20230626_KK_SC_control_39_E2_1_14156 | 1138 | 946 | 0 | 506 |
| 20230626_KK_SC_control_40_F2_1_14157 | 1318 | 1089 | 0 | 538 |
| 20230626_KK_SC_control_41_G2_1_14158 | 1474 | 1256 | 0 | 600 |
| 20230626_KK_SC_control_43_A1_1_14170 | 4587 | 4048 | 0 | 1257 |
| 20230626_KK_SC_control_44_B1_1_14171 | 2147 | 1864 | 0 | 776 |
| 20230626_KK_SC_control_45_C1_1_14172 | 1252 | 1053 | 0 | 543 |
| 20230626_KK_SC_control_46_D1_1_14173 | 1918 | 1670 | 0 | 722 |
| 20230626_KK_SC_control_47_E1_1_14174 | 1913 | 1649 | 0 | 729 |
| 20230626_KK_SC_control_48_F1_1_14175 | 1695 | 1452 | 0 | 678 |
| 20230626_KK_SC_control_49_G1_1_14176 | 937 | 785 | 0 | 399 |
| 20230629_KK_10SC_IFNy_01_A12_1_14179 | 3361 | 2986 | 0 | 1118 |
| 20230629_KK_10SC_IFNy_02_B12_1_14180 | 3233 | 2883 | 0 | 1078 |
| 20230629_KK_10SC_IFNy_03_C12_1_14182 | 4311 | 3850 | 0 | 1353 |
| 20230629_KK_10SC_IFNy_04_D12_1_14183 | 5794 | 5156 | 0 | 1523 |
| 20230629_KK_10SC_IFNy_05_E12_1_14191 | 5611 | 5008 | 0 | 1510 |
| 20230629_KK_10SC_IFNy_06_F12_1_14192 | 5881 | 5282 | 0 | 1563 |
| 20230629_KK_10SC_IFNy_07_G12_1_14194 | 5602 | 5003 | 0 | 1469 |
| 20230629_KK_10SC_control_01_A11_1_14185 | 3310 | 2938 | 0 | 1136 |
| 20230629_KK_10SC_control_02_B11_1_14186 | 3162 | 2797 | 0 | 1082 |
| 20230629_KK_10SC_control_03_C11_1_14188 | 3086 | 2748 | 0 | 1064 |
| 20230629_KK_10SC_control_04_D11_1_14189 | 3401 | 3030 | 0 | 1125 |
| 20230629_KK_10SC_control_05_E11_1_14197 | 2990 | 2669 | 0 | 1037 |
| 20230629_KK_10SC_control_06_F11_1_14198 | 3351 | 2977 | 0 | 1112 |
| 20230629_KK_10SC_control_07_G11_1_14200 | 3773 | 3357 | 0 | 1237 |
| 20230629_KK_10SC_control_08_H11_1_14201 | 4121 | 3581 | 0 | 1148 |
| 20230630_KK_SC_IFNy_51_A7_1_14204 | 1543 | 1321 | 0 | 632 |
| 20230630_KK_SC_IFNy_52_B7_1_14205 | 1697 | 1436 | 0 | 683 |
| 20230630_KK_SC_IFNy_53_C7_1_14206 | 1766 | 1495 | 0 | 693 |
| 20230630_KK_SC_IFNy_54_D7_1_14207 | 1434 | 1224 | 0 | 594 |
| 20230630_KK_SC_IFNy_55_E7_1_14208 | 1500 | 1286 | 0 | 626 |
| 20230630_KK_SC_IFNy_56_F7_1_14209 | 903 | 741 | 0 | 392 |
| 20230630_KK_SC_IFNy_57_G7_1_14210 | 977 | 804 | 0 | 432 |
| 20230630_KK_SC_IFNy_58_H7_1_14211 | 834 | 689 | 0 | 384 |
| 20230630_KK_SC_IFNy_59_A8_1_14222 | 796 | 643 | 0 | 365 |
| 20230630_KK_SC_IFNy_60_B8_1_14223 | 1812 | 1552 | 0 | 699 |
| 20230630_KK_SC_IFNy_61_C8_1_14224 | 1860 | 1618 | 0 | 727 |
| 20230630_KK_SC_IFNy_62_D8_1_14225 | 1565 | 1338 | 0 | 659 |
| 20230630_KK_SC_IFNy_63_E8_1_14226 | 2674 | 2349 | 0 | 934 |
| 20230630_KK_SC_IFNy_64_F8_1_14227 | 2062 | 1791 | 0 | 763 |
| 20230630_KK_SC_IFNy_65_G8_1_14228 | 920 | 754 | 0 | 393 |
| 20230630_KK_SC_IFNy_67_A9_1_14240 | 1618 | 1384 | 0 | 651 |
| 20230630_KK_SC_IFNy_68_B9_1_14241 | 1967 | 1681 | 0 | 775 |
| 20230630_KK_SC_IFNy_69_C9_1_14242 | 1702 | 1479 | 0 | 692 |
| 20230630_KK_SC_IFNy_70_D9_1_14243 | 1604 | 1378 | 0 | 650 |
| 20230630_KK_SC_IFNy_71_E9_1_14244 | 1589 | 1367 | 0 | 657 |
| 20230630_KK_SC_IFNy_72_F9_1_14245 | 862 | 703 | 0 | 381 |
| 20230630_KK_SC_IFNy_73_G9_1_14246 | 516 | 417 | 0 | 252 |
| 20230630_KK_SC_IFNy_75_A10_1_14258 | 1156 | 977 | 0 | 475 |
| 20230630_KK_SC_IFNy_76_B10_1_14259 | 818 | 674 | 0 | 351 |
| 20230630_KK_SC_IFNy_77_C10_1_14260 | 2372 | 2078 | 0 | 852 |
| 20230630_KK_SC_IFNy_78_D10_1_14261 | 733 | 607 | 0 | 331 |
| 20230630_KK_SC_IFNy_79_E10_1_14262 | 1058 | 894 | 0 | 453 |
| 20230630_KK_SC_IFNy_81_G10_1_14264 | 1419 | 1201 | 0 | 568 |
| 20230630_KK_SC_control_51_A6_1_14213 | 1789 | 1530 | 0 | 701 |
| 20230630_KK_SC_control_52_B6_1_14214 | 1458 | 1234 | 0 | 601 |
| 20230630_KK_SC_control_53_C6_1_14215 | 2108 | 1828 | 0 | 838 |
| 20230630_KK_SC_control_54_D6_1_14216 | 2075 | 1792 | 0 | 792 |
| 20230630_KK_SC_control_56_F6_1_14218 | 1233 | 1040 | 0 | 523 |
| 20230630_KK_SC_control_58_H6_1_14220 | 1598 | 1360 | 0 | 665 |
| 20230630_KK_SC_control_59_A5_1_14231 | 1649 | 1406 | 0 | 669 |
| 20230630_KK_SC_control_60_B5_1_14232 | 777 | 643 | 0 | 340 |
| 20230630_KK_SC_control_61_C5_1_14233 | 1697 | 1451 | 0 | 689 |
| 20230630_KK_SC_control_62_D5_1_14234 | 2115 | 1830 | 0 | 783 |
| 20230630_KK_SC_control_63_E5_1_14235 | 819 | 683 | 0 | 350 |
| 20230630_KK_SC_control_64_F5_1_14236 | 1400 | 1155 | 0 | 584 |
| 20230630_KK_SC_control_65_G5_1_14237 | 603 | 492 | 0 | 277 |
| 20230630_KK_SC_control_67_A4_1_14249 | 1794 | 1551 | 0 | 697 |
| 20230630_KK_SC_control_68_B4_1_14250 | 1948 | 1701 | 0 | 724 |
| 20230630_KK_SC_control_69_C4_1_14251 | 2150 | 1841 | 0 | 821 |
| 20230630_KK_SC_control_70_D4_1_14252 | 1105 | 918 | 0 | 479 |
| 20230630_KK_SC_control_71_E4_1_14253 | 691 | 564 | 0 | 302 |
| 20230630_KK_SC_control_72_F4_1_14254 | 624 | 512 | 0 | 277 |
| 20230630_KK_SC_control_73_G4_1_14255 | 1571 | 1349 | 0 | 613 |
| 20230630_KK_SC_control_75_A3_1_14267 | 1289 | 1103 | 0 | 520 |
| 20230630_KK_SC_control_76_B3_1_14268 | 1556 | 1329 | 0 | 619 |
| 20230630_KK_SC_control_77_C3_1_14269 | 1556 | 1342 | 0 | 633 |
| 20230630_KK_SC_control_78_D3_1_14270 | 1786 | 1544 | 0 | 702 |
| 20230630_KK_SC_control_79_E3_1_14271 | 1615 | 1386 | 0 | 633 |
| 20230630_KK_SC_control_80_A10_1_14272 | 1302 | 1096 | 0 | 573 |
| 20230630_KK_SC_control_82_C10_1_14274 | 1890 | 1641 | 0 | 732 |
Identification Summary
Number of Peptides identified Per Protein
ProteinGroups Count
Peptide ID Count
Peptide Length Distribution
FragPipe: psm.tsv ('Peptide Length': number of residues in the peptide sequence).
MaxQuant: evidence.txt ('Length': the length of the sequence stored in the column 'Sequence').
DIA-NN: report.tsv (the length of the 'Stripped.Sequence').
quantms: *.mzTab (the length of sequence).
Quantification Analysis
Peptides Quantification Table
| PeptideID | Protein Name | Peptide Sequence | Best Search Score | Average Intensity |
|---|---|---|---|---|
| 1 | RL4_HUMAN | AAAAAAALQAK | 0.9902 | 2.6246 |
| 2 | FUMH_HUMAN | AAAEVNQDYGLDPK | 0.9901 | 2.5643 |
| 3 | TOM70_HUMAN | AAAFEQLQK | 0.9901 | 2.6455 |
| 4 | PLEC_HUMAN | AAAGKAELELELGR | 0.9901 | 2.5892 |
| 5 | RUFY1_HUMAN | AAAGLGGGDSGDGTAR | 0.9997 | 2.5814 |
| 6 | MIC19_HUMAN | AAANEQLTR | 0.9901 | 2.7989 |
| 7 | ODPA_HUMAN | AAASTDYYK | 0.9915 | 2.5269 |
| 8 | ODPA_HUMAN | AAASTDYYKR | 0.9910 | 2.2373 |
| 9 | NDUV2_HUMAN | AAAVLPVLDLAQR | 0.9901 | 2.5184 |
| 10 | TPM3_HUMAN | AADAEAEVASLNR | 0.9912 | 2.5851 |
| 11 | SNW1_HUMAN | AADKLAPAQYIR | 0.9924 | 2.3333 |
| 12 | S10AG_HUMAN | AADKLIQNLDANHDGR | 0.9906 | 2.4694 |
| 13 | EVPL_HUMAN | AAEDAVYELQSK | 0.9970 | 2.6177 |
| 14 | PHB_HUMAN | AAELIANSLATAGDGLIELR | 0.9900 | 2.5985 |
| 15 | TREX2_HUMAN | AAELLAWADEQAR | 0.9996 | 2.6645 |
| 16 | LMAN1_HUMAN | AAFENWEVEVTFR | 0.9938 | 2.4284 |
| 17 | K22E_HUMAN | AAFGGSGGR | 0.9909 | 4.1891 |
| 18 | SRRM2_HUMAN | AAFGISDSYVDGSSFDPQRR | 0.9916 | 2.5985 |
| 19 | ALDH2_HUMAN | AAFQLGSPWR | 0.9918 | 2.6380 |
| 20 | SPEE_HUMAN | AAFVLPEFAR | 0.9913 | 2.5888 |
| 21 | ITA3_HUMAN | AAFVSEQQQK | 0.9908 | 3.0893 |
| 22 | TACD2_HUMAN | AAGDVDIGDAAYYFER | 0.9913 | 2.3003 |
| 23 | PIGR_HUMAN | AAGSRDVSLAK | 0.9994 | 2.9501 |
| 24 | JAGN1_HUMAN | AAGTDGSDFQHR | 0.9938 | 1.7763 |
| 25 | JAGN1_HUMAN | AAGTDGSDFQHRER | 0.9911 | 2.4834 |
| 26 | RLA1_HUMAN | AAGVNVEPFWPGLFAK | 0.9964 | 3.0044 |
| 27 | TCPB_HUMAN | AAHSEGNTTAGLDMR | 0.9906 | 2.6088 |
| 28 | PHB_HUMAN | AAIISAEGDSK | 0.9925 | 3.1291 |
| 29 | PHB_HUMAN | AAIISAEGDSKAAELIANSLATAGDGLIELR | 0.9906 | 2.3424 |
| 30 | MYH14_HUMAN | AAILEEKR | 0.9902 | 2.5634 |
| 31 | NTF2_HUMAN | AAIVEKLSSLPFQK | 0.9918 | 2.3449 |
| 32 | EMAL4_HUMAN | AALADVLR | 0.9994 | 2.7906 |
| 33 | EMAL4_HUMAN | AALADVLRR | 0.9994 | 2.3608 |
| 34 | PLEC_HUMAN | AALAHSEEVTASQVAATK | 0.9900 | 2.7791 |
| 35 | EVPL_HUMAN | AALDLER | 0.9986 | 2.8679 |
| 36 | TBL3_HUMAN | AALEALLPYTER | 0.9903 | 2.5478 |
| 37 | SIPA1_HUMAN | AALEEEVR | 0.9935 | 2.5965 |
| 38 | PLEC_HUMAN | AALEEVERLK | 0.9926 | 2.6259 |
| 39 | K1C9_HUMAN | AALEKSLEDTK | 0.9910 | 2.6091 |
| 40 | HMOX1_HUMAN | AALEQDLAFWYGPR | 0.9955 | 2.8445 |
| 41 | PXL2A_HUMAN | AALEYLEDIDLK | 0.9918 | 2.1066 |
| 42 | SP16H_HUMAN | AALLTER | 0.9908 | 2.5853 |
| 43 | RS25_HUMAN | AALQELLSK | 0.9908 | 2.6922 |
| 44 | ECHB_HUMAN | AALTGLLHR | 0.9909 | 3.2359 |
| 45 | LXN_HUMAN | AALVAQNYINYQQGTPHR | 0.9907 | 2.5402 |
| 46 | TBB6_HUMAN | AALVDLEPGTMDSVR | 0.9982 | 2.8610 |
| 47 | PGM2_HUMAN | AAMGPGISR | 0.9940 | 2.7615 |
| 48 | PLAK_HUMAN | AAMIVNQLSK | 0.9942 | 3.4678 |
| 49 | PLAK_HUMAN | AAMIVNQLSKK | 0.9951 | 3.0329 |
| 50 | ANXA1_HUMAN | AAMKGLGTDEDTLIEILASR | 0.9941 | 2.9676 |
Protein Quantification Table
| ProteinID | Protein Name | Number of Peptides | Average Intensity |
|---|---|---|---|
| 1 | 1433B_HUMAN | 3 | 2.4811 |
| 2 | 1433B_HUMAN;1433E_HUMAN;1433G_HUMAN;1433S_HUMAN;1433T_HUMAN;1433Z_HUMAN | 1 | 3.1921 |
| 3 | 1433B_HUMAN;1433G_HUMAN;1433Z_HUMAN | 1 | 2.3877 |
| 4 | 1433B_HUMAN;1433S_HUMAN;1433T_HUMAN;1433Z_HUMAN | 1 | 2.9864 |
| 5 | 1433B_HUMAN;1433T_HUMAN | 1 | 3.0819 |
| 6 | 1433B_HUMAN;1433T_HUMAN;1433Z_HUMAN | 1 | 3.0938 |
| 7 | 1433E_HUMAN | 3 | 2.6973 |
| 8 | 1433G_HUMAN | 2 | 2.5469 |
| 9 | 1433G_HUMAN;1433S_HUMAN;1433Z_HUMAN | 1 | 3.9055 |
| 10 | 1433S_HUMAN | 10 | 3.0845 |
| 11 | 1433Z_HUMAN | 7 | 2.8169 |
| 12 | 2AAA_HUMAN | 4 | 2.5865 |
| 13 | 4F2_HUMAN | 11 | 2.7064 |
| 14 | 5NT3A_HUMAN | 2 | 2.4555 |
| 15 | 5NT3B_HUMAN | 1 | 3.0432 |
| 16 | 6PGD_HUMAN | 6 | 2.8426 |
| 17 | 6PGL_HUMAN | 4 | 2.6621 |
| 18 | A1AT_HUMAN | 3 | 2.6320 |
| 19 | A2GL_HUMAN | 1 | 2.2294 |
| 20 | A2MG_HUMAN | 4 | 2.4513 |
| 21 | A2ML1_HUMAN | 21 | 2.9154 |
| 22 | AAAT_HUMAN | 2 | 2.6901 |
| 23 | AACT_HUMAN | 4 | 2.4266 |
| 24 | AAMP_HUMAN | 1 | 2.9336 |
| 25 | AASS_HUMAN | 1 | 2.4655 |
| 26 | AATC_HUMAN | 9 | 2.7361 |
| 27 | AATM_HUMAN | 10 | 2.8109 |
| 28 | ABCA7_HUMAN | 1 | 3.2719 |
| 29 | ABCB5_HUMAN | 1 | 3.8196 |
| 30 | ABHD1_HUMAN | 1 | 2.7882 |
| 31 | ABHDA_HUMAN | 2 | 2.4077 |
| 32 | ABHDB_HUMAN | 1 | 2.4833 |
| 33 | ABHEB_HUMAN | 1 | 2.2487 |
| 34 | ABHGA_HUMAN | 1 | 2.0888 |
| 35 | ABI1_HUMAN | 1 | 2.5522 |
| 36 | ABL2_HUMAN | 1 | 3.3552 |
| 37 | ABLM1_HUMAN | 1 | 2.6041 |
| 38 | ACACA_HUMAN | 1 | 2.8701 |
| 39 | ACAD9_HUMAN | 2 | 2.4690 |
| 40 | ACADM_HUMAN | 4 | 2.4907 |
| 41 | ACADS_HUMAN | 1 | 2.3229 |
| 42 | ACADV_HUMAN | 8 | 2.6504 |
| 43 | ACBP_HUMAN | 2 | 3.0188 |
| 44 | ACE_HUMAN | 1 | 3.4431 |
| 45 | ACINU_HUMAN | 2 | 2.5839 |
| 46 | ACON_HUMAN | 8 | 2.7587 |
| 47 | ACOT1_HUMAN | 1 | 2.7624 |
| 48 | ACOT1_HUMAN;ACOT2_HUMAN | 2 | 2.7421 |
| 49 | ACOT2_HUMAN | 1 | 3.0597 |
| 50 | ACOT9_HUMAN | 1 | 2.4193 |
Intensity Distribution
Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).
Standard Deviation of Intensity
MS1 Analysis
MS1 Area Distribution
Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).
MS2 and Spectral Stats
Distribution of Precursor Charges
Charge-state
RT Quality Control
IDs over RT
This plot allows to judge column occupancy over retention time. Ideally, the LC gradient is chosen such that the number of identifications (here, after FDR filtering) is uniform over time, to ensure consistent instrument duty cycles. Sharp peaks and uneven distribution of identifications over time indicate potential for LC gradient optimization. See [Moruz 2014, DOI: 10.1002/pmic.201400036](https://pubmed.ncbi.nlm.nih.gov/24700534/) for details.