A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.
This report has been generated by the bigbio/quantms analysis pipeline. For information about how to interpret these results, please see the documentation.
/home/runner/work/pmultiqc/pmultiqc/data_temp
pmultiqc
pmultiqc is a MultiQC module to show the pipeline performance of mass spectrometry based quantification pipelines such as nf-core/quantms, MaxQuant, and DIA-NN.https://github.com/bigbio/pmultiqc
Experimental Design and Metadata
Experimental Design
| Sample Name | MSstats Condition: CT | MSstats Condition: CN | MSstats Condition: QY | MSstats BioReplicate | Fraction Group | Fraction | Label |
|---|---|---|---|---|---|---|---|
| Sample 1 | Mixture | UPS1 | 0.1 fmol | 1 | |||
| 1 | 1 | 1 | |||||
| 2 | 1 | 1 | |||||
| Sample 2 | Mixture | UPS1 | 0.25 fmol | 2 | |||
| 3 | 1 | 1 | |||||
| 4 | 1 | 1 |
Results Overview
Summary Table
| #Peptides Quantified | #Proteins Quantified |
|---|---|
| 5682 | 1540 |
HeatMap
Pipeline Result Statistics
| Sample Name | MSstats Condition: CT | MSstats Condition: CN | MSstats Condition: QY | Fraction | #Peptide IDs | #Unambiguous Peptide IDs | #Modified Peptide IDs | #Protein (group) IDs |
|---|---|---|---|---|---|---|---|---|
| Sample 1 | Mixture | UPS1 | 0.1 fmol | 5512 | 5512 | 878 | 1512 | |
| 1 | 5295 | 5295 | 835 | 1477 | ||||
| 1 | 5362 | 5362 | 858 | 1494 | ||||
| Sample 2 | Mixture | UPS1 | 0.25 fmol | 5645 | 5645 | 902 | 1531 | |
| 1 | 5520 | 5520 | 881 | 1510 | ||||
| 1 | 5506 | 5506 | 879 | 1508 |
Identification Summary
Number of Peptides identified Per Protein
ProteinGroups Count
Peptide ID Count
Modifications
The plot will show percentages, i.e. is normalized by the total number of peptide sequences (where different charge state counts as a separate peptide) per Raw file. The sum of frequencies may exceed 100% per Raw file, since a peptide can have multiple modifications.
E.g. given three peptides in a single Raw file1. _M(Oxidation (M))LVLDEADEM(Oxidation (M))LNK_
2. _(Acetyl (Protein N-term))M(Oxidation (M))YGLLLENLSEYIK_
3. DPFIANGER
, the following frequencies arise:
* 33% of 'Acetyl (Protein N-term)'* 33% of 'Oxidation (M)'
* 33% of '2 Oxidation (M)'
* 33% of 'Unmodified'
Thus, 33% of sequences are unmodified, implying 66% are modified at least once. If a modification, e.g. Oxidation(M), occurs multiple times in a single peptide it's listed as a separate modification (e.g. '2 Oxidation (M)' for double oxidation of a single peptide).
Quantification Analysis
Peptides Quantification Table
| PeptideID | Protein Name | Peptide Sequence | Best Search Score | Average Intensity | CT=Mixture;CN=UPS1;QY=0.1 fmol | CT=Mixture;CN=UPS1;QY=0.25 fmol |
|---|---|---|---|---|---|---|
| 1 | TOLA_ECOLI | AAAEADDIFGELSSGK | 1.0000 | 6.6828 | 6.6581 | 6.7062 |
| 2 | G3P2_ECOLI | AAAENIIPHTTGAAK | 0.9998 | 6.4660 | 6.4003 | 6.5230 |
| 3 | RLMH_ECOLI | AAAEQSWSLSALTLPHPLVR | 1.0000 | 7.0008 | 6.9572 | 7.0405 |
| 4 | PDXJ_ECOLI | AAAEVGAPFIEIHTGCYADAK | 0.9987 | 7.3254 | 7.3254 | 0.0000 |
| 5 | RL10_ECOLI | AAAFEGELIPASQIDR | 1.0000 | 8.8590 | 8.8179 | 8.8965 |
| 6 | YFGM_ECOLI | AAAQLQQGLADTSDENLK | 1.0000 | 7.5235 | 7.5322 | 7.5147 |
| 7 | YFGM_ECOLI | AAAQLQQGLADTSDENLKAVINLR | 1.0000 | 7.3320 | 7.1963 | 7.4352 |
| 8 | RHLE_ECOLI | AAATGEALSLVCVDEHK | 0.9998 | 6.6031 | 6.5730 | 6.6313 |
| 9 | SYP_ECOLI | AAATQEMTLVDTPNAK | 1.0000 | 7.1920 | 7.1199 | 7.2538 |
| 10 | EUTL_ECOLI | AACNAFTDAVLEIAR | 1.0000 | 6.6047 | 6.5527 | 6.6511 |
| 11 | ACRB_ECOLI | AADGQMVPFSAFSSSR | 0.9998 | 6.5407 | 6.3578 | 6.6690 |
| 12 | YIDA_ECOLI | AADGSTVAQTALSYDDYR | 0.9987 | 6.6627 | 6.7245 | 6.6282 |
| 13 | ADHE_ECOLI | AADIVLQAAIAAGAPK | 1.0000 | 8.3796 | 8.3536 | 8.4041 |
| 14 | NARG_ECOLI | AADLVDALGQENNPEWK | 1.0000 | 6.7428 | 6.6793 | 6.7981 |
| 15 | OXYR_ECOLI | AADSCHVSQPTLSGQIR | 1.0000 | 7.0733 | 7.0424 | 7.1021 |
| 16 | TALA_ECOLI | AAEELEKEGINCNLTLLFSFAQAR | 1.0000 | 7.0421 | 6.9818 | 7.0951 |
| 17 | HEMY_ECOLI | AAELAGNDTIPVEITR | 1.0000 | 7.1336 | 7.1077 | 7.1581 |
| 18 | SYL_ECOLI | AAENNPELAAFIDECR | 1.0000 | 7.5469 | 7.5049 | 7.5852 |
| 19 | TALB_ECOLI | AAEQLEKEGINCNLTLLFSFAQAR | 1.0000 | 7.7539 | 7.6773 | 7.8190 |
| 20 | MBHM_ECOLI | AAESALNIDVPVNAQYIR | 1.0000 | 6.7830 | 6.7696 | 6.7960 |
| 21 | DNAG_ECOLI | AAESGVSRPVPQLKR | 0.9993 | 5.5067 | 5.3646 | 5.6135 |
| 22 | HDFR_ECOLI | AAESLYLTQSAVSFR | 1.0000 | 6.4793 | 6.4830 | 6.4756 |
| 23 | RNE_ECOLI | AAESRPAPFLIHQESNVIVR | 1.0000 | 7.4295 | 7.4118 | 7.4465 |
| 24 | HFLK_ECOLI | AAFDDAIAARENEQQYIR | 1.0000 | 6.5652 | 6.4285 | 6.6691 |
| 25 | AROF_ECOLI | AAFPLSLQQEAQIADSR | 1.0000 | 6.4807 | 6.3720 | 6.5676 |
| 26 | AROF_ECOLI | AAFPLSLQQEAQIADSRK | 0.9993 | 7.0514 | 7.0599 | 7.0428 |
| 27 | BOLA_ECOLI | AAFQPVFLEVVDESYR | 1.0000 | 7.1941 | 7.1723 | 7.2149 |
| 28 | CLPB_ECOLI | AAGATTANITQAIEQMR | 1.0000 | 7.5987 | 7.6781 | 7.5527 |
| 29 | YBIS_ECOLI | AAGEPLPAVVPAGPDNPMGLYALYIGR | 1.0000 | 6.6548 | 6.5405 | 6.7453 |
| 30 | SDHA_ECOLI | AAGLHLQESIAEQGALR | 0.9998 | 6.0757 | 6.0128 | 6.1307 |
| 31 | TALA_ECOLI | AAGLSQYEHLIDDAIAWGK | 0.9992 | 6.8263 | 6.7789 | 6.8482 |
| 32 | TALA_ECOLI | AAGLSQYEHLIDDAIAWGKK | 1.0000 | 6.9728 | 6.9756 | 6.9699 |
| 33 | ADHE_ECOLI | AAGVETEVFFEVEADPTLSIVR | 1.0000 | 6.9087 | 6.9472 | 6.8666 |
| 34 | ADHE_ECOLI | AAGVETEVFFEVEADPTLSIVRK | 0.9998 | 7.4544 | 7.3854 | 7.5139 |
| 35 | ENO_ECOLI | AAGYELGKDITLAMDCAASEFYK | 1.0000 | 7.8751 | 7.8493 | 7.8994 |
| 36 | YEBE_ECOLI | AAHQDEPQFGAQSTPLDER | 0.9998 | 5.8692 | 5.9181 | 5.8140 |
| 37 | RIBB_ECOLI | AAIADGAKPSDLNRPGHVFPLR | 1.0000 | 7.2375 | 7.1964 | 7.2750 |
| 38 | DEOC_ECOLI | AAIAYGADEVDVVFPYR | 1.0000 | 7.5553 | 7.4613 | 7.6326 |
| 39 | IDH_ECOLI | AAIEYAIANDRDSVTLVHK | 1.0000 | 7.8134 | 7.7834 | 7.8416 |
| 40 | SYFA_ECOLI | AAISQASDVAALDNVR | 1.0000 | 7.2678 | 7.2633 | 7.2721 |
| 41 | SYFA_ECOLI | AAISQASDVAALDNVRVEYLGK | 1.0000 | 7.6984 | 7.6417 | 7.7486 |
| 42 | MUKF_ECOLI | AAISSCELLLSETSGTLR | 0.9993 | 6.1472 | 6.1559 | 6.1383 |
| 43 | MSCM_ECOLI | AAKPAQPEVVEALQSALNALEER | 0.9998 | 6.0540 | 5.9369 | 6.1461 |
| 44 | AMPN_ECOLI | AALEQLKGLENLSGDLYEK | 1.0000 | 7.5103 | 7.4162 | 7.5875 |
| 45 | DBHA_ECOLI | AALESTLAAITESLK | 1.0000 | 7.9537 | 7.9562 | 7.9512 |
| 46 | HEM3_ECOLI | AALPPEISLPAVGQGAVGIECR | 0.9993 | 6.4280 | 6.3064 | 6.5230 |
| 47 | SDHA_ECOLI | AALQISQSGQTCALLSK | 1.0000 | 6.1566 | 6.0976 | 6.2086 |
| 48 | THIP_ECOLI | AAMLALLQMVCCLGLVLLSQR | 0.9929 | 5.8504 | 5.8120 | 5.8857 |
| 49 | DHE4_ECOLI | AANAGGVATSGLEMAQNAAR | 1.0000 | 6.8077 | 6.7297 | 6.8737 |
| 50 | GRCA_ECOLI | AANDDLLNSFWLLDSEK | 0.9998 | 6.5810 | 6.5594 | 6.6016 |
Protein Quantification Table
| ProteinID | Protein Name | Number of Peptides | Average Intensity | CT=Mixture;CN=UPS1;QY=0.1 fmol | CT=Mixture;CN=UPS1;QY=0.25 fmol |
|---|---|---|---|---|---|
| 1 | 3PASE_ECOLI | 1 | 6.9494 | 6.8807 | 7.0088 |
| 2 | 5DNU_ECOLI | 1 | 6.1932 | 6.1003 | 6.2696 |
| 3 | 6PGD_ECOLI | 10 | 8.3638 | 8.3396 | 8.3867 |
| 4 | 6PGL_ECOLI | 2 | 7.6326 | 7.5889 | 7.6640 |
| 5 | AAS_ECOLI | 3 | 6.8951 | 6.8911 | 6.9008 |
| 6 | AAT_ECOLI | 2 | 7.9658 | 7.9296 | 7.9991 |
| 7 | ABGT_ECOLI | 1 | 7.7790 | 7.7790 | 0.0000 |
| 8 | ACCA_ECOLI | 11 | 8.2755 | 8.2307 | 8.3152 |
| 9 | ACCC_ECOLI | 12 | 8.4620 | 8.4276 | 8.4927 |
| 10 | ACCD_ECOLI | 4 | 7.8815 | 7.8808 | 7.8823 |
| 11 | ACEA_ECOLI | 10 | 7.7598 | 7.6947 | 7.7891 |
| 12 | ACFD_ECOLI | 8 | 7.6336 | 7.6026 | 7.6641 |
| 13 | ACKA_ECOLI | 11 | 9.1093 | 9.0727 | 9.1428 |
| 14 | ACNA_ECOLI | 3 | 6.7833 | 6.6970 | 6.8553 |
| 15 | ACNB_ECOLI | 12 | 8.2805 | 8.2312 | 8.3191 |
| 16 | ACP_ECOLI | 1 | 7.6389 | 7.5918 | 7.6815 |
| 17 | ACRA_ECOLI | 6 | 8.1738 | 8.1263 | 8.2167 |
| 18 | ACRB_ECOLI | 6 | 8.3756 | 8.3427 | 8.4068 |
| 19 | ACSA_ECOLI | 1 | 6.1529 | 6.0606 | 6.1926 |
| 20 | ACUI_ECOLI | 4 | 7.8570 | 7.7718 | 7.9282 |
| 21 | ACYP_ECOLI | 1 | 6.3378 | 6.3316 | 6.3409 |
| 22 | ADD_ECOLI | 6 | 8.0337 | 8.0400 | 8.0307 |
| 23 | ADEC_ECOLI | 1 | 5.4576 | 5.4344 | 5.4797 |
| 24 | ADHE_ECOLI | 33 | 9.5549 | 9.5068 | 9.5983 |
| 25 | ADHP_ECOLI | 2 | 6.5932 | 6.6095 | 6.5762 |
| 26 | ADIA_ECOLI | 3 | 7.1124 | 7.0835 | 7.1395 |
| 27 | ADPP_ECOLI | 2 | 7.0229 | 6.9876 | 7.0556 |
| 28 | AGP_ECOLI | 3 | 6.6330 | 6.5797 | 6.6804 |
| 29 | AHPC_ECOLI | 10 | 9.0158 | 9.0115 | 9.0242 |
| 30 | AHPF_ECOLI | 10 | 8.3830 | 8.3442 | 8.4196 |
| 31 | AK1H_ECOLI | 7 | 7.3497 | 7.3095 | 7.3904 |
| 32 | AK2H_ECOLI | 4 | 7.1237 | 7.0812 | 7.1625 |
| 33 | AK3_ECOLI | 6 | 7.4464 | 7.2458 | 7.4599 |
| 34 | ALAA_ECOLI | 2 | 6.8790 | 6.8346 | 6.9194 |
| 35 | ALAC_ECOLI | 5 | 8.0506 | 8.0097 | 8.0880 |
| 36 | ALDB_ECOLI | 1 | 6.4192 | 6.4015 | 6.4362 |
| 37 | ALF1_ECOLI | 3 | 7.1007 | 6.8972 | 7.0926 |
| 38 | ALF_ECOLI | 12 | 9.4015 | 9.3588 | 9.4395 |
| 39 | ALKH_ECOLI | 4 | 7.7365 | 7.6386 | 7.8109 |
| 40 | ALLE_ECOLI | 1 | 6.2522 | 6.1514 | 6.3340 |
| 41 | ALR1_ECOLI | 3 | 7.3731 | 7.3394 | 7.4043 |
| 42 | AMIA_ECOLI | 1 | 5.9071 | 5.8856 | 5.9276 |
| 43 | AMIB_ECOLI | 2 | 6.4927 | 6.4137 | 6.5595 |
| 44 | AMIC_ECOLI | 4 | 6.9237 | 6.8522 | 6.9852 |
| 45 | AMN_ECOLI | 6 | 7.3552 | 7.3334 | 7.3729 |
| 46 | AMPA_ECOLI | 7 | 7.8893 | 7.8640 | 7.9138 |
| 47 | AMPC_ECOLI | 2 | 7.1425 | 7.1013 | 7.1801 |
| 48 | AMPH_ECOLI | 2 | 6.5330 | 6.4786 | 6.5813 |
| 49 | AMPN_ECOLI | 7 | 8.1028 | 8.0590 | 8.1426 |
| 50 | AMPP_ECOLI | 2 | 7.1264 | 7.0775 | 7.1703 |
Intensity Distribution
Standard Deviation of Intensity
MS1 Analysis
Total Ion Chromatograms
MS1 Base Peak Chromatograms
MS1 Peaks
General stats for MS1 information
| File | Acquisition Date Time | log10(Total Current) | log10(Scan Current) |
|---|---|---|---|
| RD139_Narrow_UPS1_0_1fmol_inj1 | 2018-09-01 20:06:01 | 12.2519 | 12.0890 |
| RD139_Narrow_UPS1_0_1fmol_inj2 | 2018-09-02 11:02:22 | 12.2542 | 12.1204 |
| RD139_Narrow_UPS1_0_25fmol_inj1 | 2018-09-01 22:09:01 | 12.2904 | 12.1417 |
| RD139_Narrow_UPS1_0_25fmol_inj2 | 2018-09-02 13:05:24 | 12.2901 | 12.1573 |
Ms1 Area Distribution
MS2 and Spectral Stats
Number of Peaks per MS/MS spectrum
Peak Intensity Distribution
Distribution of Precursor Charges
Charge-state of Per File
Mass Error Trends
Delta Mass
RT Quality Control
IDs over RT
This plot allows to judge column occupancy over retention time. Ideally, the LC gradient is chosen such that the number of identifications (here, after FDR filtering) is uniform over time, to ensure consistent instrument duty cycles. Sharp peaks and uneven distribution of identifications over time indicate potential for LC gradient optimization. See [Moruz 2014, DOI: 10.1002/pmic.201400036](https://pubmed.ncbi.nlm.nih.gov/24700534/) for details.
Normalisation Factor over RT
FWHM over RT
Peak Width over RT
Absolute RT Error over RT
LOESS RT ~ iRT
Software Versions
Software Versions lists versions of software tools extracted from file contents.
| Group | Software | Version |
|---|---|---|
| ASSEMBLE_EMPIRICAL_LIBRARY | DIA-NN | 2.1.0 |
| CONVERT_RESULTS | quantms-utils | 0.0.23 |
| FINAL_QUANTIFICATION | DIA-NN | 2.1.0 |
| GENERATE_CFG | quantms-utils | 0.0.23 |
| INDIVIDUAL_ANALYSIS | DIA-NN | 2.1.0 |
| MSSTATS_LFQ | bioconductor-msstats | 4.14.0 |
| r-base | 4.4.2 | |
| MZML_STATISTICS | quantms-utils | 0.0.23 |
| PRELIMINARY_ANALYSIS | DIA-NN | 2.1.0 |
| SAMPLESHEET_CHECK | quantms-utils | 0.0.23 |
| SDRF_PARSING | sdrf-pipelines | 0.0.32 |
| THERMORAWFILEPARSER | ThermoRawFileParser | 1.3.4 |
| Workflow | Nextflow | 24.10.5 |
| bigbio/quantms | v1.5.0 |
bigbio/quantms Workflow Summary
- this information is collected when the pipeline is started.https://github.com/bigbio/quantms
Input/output options
- export_decoy_psm
- true
- input
- /home/yueqx/Data_Disk/proteogenomics/quantms/test_dia/PXD026600.sdrf.tsv
- outdir
- /home/yueqx/Data_Disk/proteogenomics/quantms/results_dia
SDRF validation
- skip_factor_validation
- true
- use_ols_cache_only
- true
- validate_ontologies
- true
Protein database
- database
- /home/yueqx/Data_Disk/proteogenomics/quantms/test_dia/REF_EColi_K12_UPS1_combined.fasta
Database search
- allowed_missed_cleavages
- 1
- max_fr_mz
- 1500
- max_mods
- 2
- max_peptide_length
- 30
- max_pr_mz
- 950
- max_precursor_charge
- 3
- min_fr_mz
- 500
- min_peptide_length
- 15
- min_pr_mz
- 350
Modification localization
- luciphor_debug
- 0
PSM re-scoring (general)
- run_fdr_cutoff
- 0.10
PSM re-scoring (Percolator)
- description_correct_features
- 0
Consensus ID
- consensusid_considered_top_hits
- 0
- min_consensus_support
- 0
Isobaric analyzer
- quant_activation_method
- HCD
Protein Quantification (LFQ)
- feature_with_id_min_score
- 0.10
DIA-NN
- diann_normalize
- false
Statistical post-processing
- contrasts
- pairwise
Quality control
- enable_pmultiqc
- true
- pmultiqc_idxml_skip
- true
Institutional config options
- custom_config_base
- /home/yueqx/Data_Disk/proteogenomics/quantms/test_dia/confs
Generic options
- publish_dir_mode
- symlink
- trace_report_suffix
- 2025-07-22_10-44-58
Core Nextflow options
- configFiles
- N/A
- container
- [withLabel:diann:docker.io/library/diann-2.1.0]
- containerEngine
- docker
- launchDir
- /home/yueqx/Data_Disk/proteogenomics/quantms
- profile
- docker
- projectDir
- /home/yueqx/Data_Disk/proteogenomics/quantms/bigbio/quantms
- runName
- loquacious_wilson
- userName
- yueqx
- workDir
- /home/yueqx/Data_Disk/proteogenomics/quantms/work
bigbio/quantms Methods Description
Suggested text and references to use when describing pipeline usage within the methods section of a publication.https://github.com/bigbio/quantms
Methods
Data was processed using bigbio/quantms v1.5.0 (doi: 10.5281/zenodo.7754148) of the nf-core collection of workflows (Ewels et al., 2020), utilising reproducible software environments from the Bioconda (Grüning et al., 2018) and Biocontainers (da Veiga Leprevost et al., 2017) projects.
The pipeline was executed with Nextflow v24.10.5 (Di Tommaso et al., 2017) with the following command:
nextflow run bigbio/quantms -profile docker --custom_config_base /home/yueqx/Data_Disk/proteogenomics/quantms/test_dia/confs -c /home/yueqx/Data_Disk/proteogenomics/quantms/test_dia/confs/run_latest_dia.config
References
- Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017). Nextflow enables reproducible computational workflows. Nature Biotechnology, 35(4), 316-319. doi: 10.1038/nbt.3820
- Ewels, P. A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M. U., Di Tommaso, P., & Nahnsen, S. (2020). The nf-core framework for community-curated bioinformatics pipelines. Nature Biotechnology, 38(3), 276-278. doi: 10.1038/s41587-020-0439-x
- Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H., Valieris, R., Köster, J., & Bioconda Team. (2018). Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods, 15(7), 475–476. doi: 10.1038/s41592-018-0046-7
- da Veiga Leprevost, F., Grüning, B. A., Alves Aflitos, S., Röst, H. L., Uszkoreit, J., Barsnes, H., Vaudel, M., Moreno, P., Gatto, L., Weber, J., Bai, M., Jimenez, R. C., Sachsenberg, T., Pfeuffer, J., Vera Alvarez, R., Griss, J., Nesvizhskii, A. I., & Perez-Riverol, Y. (2017). BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics (Oxford, England), 33(16), 2580–2582. doi: 10.1093/bioinformatics/btx192
Notes:
- The command above does not include parameters contained in any configs or profiles that may have been used. Ensure the config file is also uploaded with your publication!
- You should also cite all software used within this run. Check the "Software Versions" of this report to get version information.