pmultiqc is a MultiQC plugin for comprehensive quality control reporting of proteomics data. It generates interactive HTML reports with visualizations and metrics to help you assess the quality of your mass spectrometry-based proteomics experiments.
You can use pmultiqc through our public web services:
| Service | URL | Status | Description |
|---|---|---|---|
| EBI PRIDE Service | https://www.ebi.ac.uk/pride/services/pmultiqc/ | Official EBI service with PRIDE integration | |
| FU Berlin University Service | https://pmultiqc.bsc.fu-berlin.de | pmultiqc service at Freie UniversitΓ€t Berlin | |
| TΓΌbingen University Service | https://abi-services.cs.uni-tuebingen.de/pmultiqc/ | pmultiqc service at TΓΌbingen University |
pmultiqc supports the following data sources:
experimental_design.tsv: Experimental design file*.mzTab: Results of the identification*msstats*.csv: MSstats/MSstatsTMT input files*.mzML: Spectra files*ms_info.tsv: MS quality control information*.idXML: Identification results*.yml: Pipeline parameters (optional)diann_report.tsv or diann_report.parquet: DIA-NN main report (DIA analysis only)parameters.txt: Analysis parametersproteinGroups.txt: Protein identification resultssummary.txt: Summary statisticsevidence.txt: Peptide evidencemsms.txt: MS/MS scan informationmsmsScans.txt: MS/MS scan details*sdrf.tsv: SDRF-Proteomics (optional)report.tsv or report.parquet: DIA-NN main report*sdrf.tsv: SDRF-Proteomics (optional)*ms_info.parquet: mzML statistics after RAW-to-mzML conversion (using quantms-utils) (optional)result_performance.csv: ProteoBench result file*.mzid: Identification results*.mzML or *.mgf: Corresponding spectra files# To install the stable release from PyPI:
pip install pmultiqc
# Fork the repository on GitHub
# Clone the repository
git clone https://github.com/your-username/pmultiqc.git
cd pmultiqc
# Install the package locally
pip install .
# Now you can run pmultiqc on your own dataset
pmultiqc is used as a plugin for MultiQC. After installation, you can run it using the MultiQC command-line interface.
multiqc {analysis_dir} -o {output_dir}
Where:
{analysis_dir} is the directory containing your proteomics data files{output_dir} is the directory where you want to save the report# Basic usage
multiqc --quantms_plugin /path/to/quantms/results -o ./report
# With specific options
multiqc --quantms_plugin /path/to/quantms/results -o ./report --remove_decoy --condition factor
multiqc --maxquant_plugin /path/to/maxquant/results -o ./report
# Discover report inside a results folder
multiqc --diann_plugin /path/to/diann/results -o ./report
# Directly pass a DIA-NN report file (TSV or Parquet)
# Note: MultiQC requires an analysis directory argument; use '.' as a placeholder
multiqc --diann_plugin --diann_report /path/to/report.tsv . -o ./report
multiqc --diann_plugin --diann_report /path/to/report.parquet . -o ./report
multiqc --proteobench_plugin /path/to/proteobench/files -o ./report
multiqc --mzid_plugin /path/to/mzid/files -o ./report
| Option | Description | Default |
|---|---|---|
--raw |
Keep filenames in experimental design output as raw | False |
--condition |
Create conditions from provided columns | - |
--remove_decoy |
Remove decoy peptides when counting | True |
--decoy_affix |
Pre- or suffix of decoy proteins in their accession | DECOY_ |
--contaminant_affix |
The contaminant prefix or suffix | CONT |
--affix_type |
Location of the decoy marker (prefix or suffix) | prefix |
--disable_plugin |
Disable pmultiqc plugin | False |
--quantification_method |
Quantification method for LFQ experiment | feature_intensity |
--disable_table |
Disable protein/peptide table plots for large datasets | False |
--ignored_idxml |
Ignore idXML files for faster processing | False |
--quantms_plugin |
Generate reports based on Quantms results | False |
--diann_plugin |
Generate reports based on DIANN results | False |
--diann_report |
Path to DIA-NN main report (.tsv or .parquet). When provided with --diann_plugin, you can use . as the analysis directory placeholder. |
- |
--maxquant_plugin |
Generate reports based on MaxQuant results | False |
--proteobench_plugin |
Generate reports based on ProteoBench result | False |
--mzid_plugin |
Generate reports based on mzIdentML files | False |
pmultiqc generates a comprehensive report with multiple sections:
You can find example reports on the docs page. Here are the direct links to different example reports:
| Example Type | Description | Link |
|---|---|---|
| LFQ | Label-free quantification | LFQ Example |
| TMT | Tandem mass tag | TMT Example |
| quantms DIA | Data-independent acquisition | quantms DIA Example |
| DIA-NN | Data-independent acquisition | DIA-NN Example |
| MaxQuant | MaxQuant results | MaxQuant Example |
| MaxQuant DIA | MaxQuant DIA results | MaxQuant DIA Example |
| ProteoBench | ProteoBench results | ProteoBench Example |
| mzIdentML with mzML | mzIdentML with mzML files | mzIdentML with mzML Example |
| mzIdentML with MGF | mzIdentML with MGF files | mzIdentML with MGF Example |
To contribute to pmultiqc:
git clone https://github.com/YOUR-USERNAME/pmultiqcgit checkout -b new-featurepip install -e .cd tests && multiqc resources/LFQ -o ./git commit -am 'Add new feature'git push origin new-featureFor more detailed information, visit the pmultiqc GitHub repository or check the documentation site.
This project is licensed under the terms of the LICENSE file included in the repository.
If you use pmultiqc in your research, please cite:
pmultiqc: A MultiQC plugin for proteomics quality control
https://github.com/bigbio/pmultiqc
If you have questions or need assistance: